Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1768982

ABSTRACT

Adaptive immune recognition is mediated by the binding of peptide-human leukocyte antigen complexes by T cells. Positive selection of T cells in the thymus is a fundamental step in the generation of a responding T cell repertoire: only those T cells survive that recognize human peptides presented on the surface of cortical thymic epithelial cells. We propose that while this step is essential for optimal immune function, the process results in a defective T cell repertoire because it is mediated by self-peptides. To test our hypothesis, we focused on amino acid motifs of peptides in contact with T cell receptors. We found that motifs rarely or not found in the human proteome are unlikely to be recognized by the immune system just like the ones that are not expressed in cortical thymic epithelial cells or not presented on their surface. Peptides carrying such motifs were especially dissimilar to human proteins. Importantly, we present our main findings on two independent T cell activation datasets and directly demonstrate the absence of naïve T cells in the repertoire of healthy individuals. We also show that T cell cross-reactivity is unable to compensate for the absence of positively selected T cells. Additionally, we show that the proposed mechanism could influence the risk for different infectious diseases. In sum, our results suggest a side effect of T cell positive selection, which could explain the nonresponsiveness to many nonself peptides and could improve the understanding of adaptive immune recognition.


Subject(s)
Adaptive Immunity/immunology , Self Tolerance/immunology , T-Lymphocytes/immunology , Databases, Factual , Humans , Lymphocyte Activation/immunology , Peptides/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/metabolism
3.
J Interferon Cytokine Res ; 41(11): 407-414, 2021 11.
Article in English | MEDLINE | ID: covidwho-1758604

ABSTRACT

Genetic polymorphisms at the IFNL4 loci are known to influence the clinical outcome of several different infectious diseases. Best described is the association between the IFNL4 genotype and hepatitis C virus clearance. However, an influence of the IFNL4 genotype on the adaptive immune system was suggested by several studies but never investigated in humans. In this cross-sectional study, we have genotyped 201 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive participants for 3 IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) and stratified them according to the IFNλ4 activity. Based on this stratification, we investigated the association between the IFNL4 genotype and the antibody as well as the CD8+ T cell response in the acute phase of the SARS-CoV-2 infection. We observed no differences in the genotype distribution compared with a Danish reference cohort or the 1,000 Genome Project, and we were not able to link the IFNL4 genotype to changes in either the antibody or CD8+ T cell responses of these patients.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Interleukins/immunology , SARS-CoV-2/immunology , Adaptive Immunity/genetics , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , Cross-Sectional Studies , Female , Genotype , Humans , Interleukins/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology , SARS-CoV-2/genetics , Young Adult
4.
Brain Behav Immun ; 87: 53-54, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719338

ABSTRACT

While all groups are affected by the COVID-19 pandemic, the elderly, underrepresented minorities, and those with underlying medical conditions are at the greatest risk. The high rate of consumption of diets high in saturated fats, sugars, and refined carbohydrates (collectively called Western diet, WD) worldwide, contribute to the prevalence of obesity and type 2 diabetes, and could place these populations at an increased risk for severe COVID-19 pathology and mortality. WD consumption activates the innate immune system and impairs adaptive immunity, leading to chronic inflammation and impaired host defense against viruses. Furthermore, peripheral inflammation caused by COVID-19 may have long-term consequences in those that recover, leading to chronic medical conditions such as dementia and neurodegenerative disease, likely through neuroinflammatory mechanisms that can be compounded by an unhealthy diet. Thus, now more than ever, wider access to healthy foods should be a top priority and individuals should be mindful of healthy eating habits to reduce susceptibility to and long-term complications from COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Diet, Western/statistics & numerical data , Inflammation/epidemiology , Obesity/epidemiology , Pneumonia, Viral/epidemiology , Adaptive Immunity/immunology , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Dementia/epidemiology , Dementia/immunology , Diabetes Mellitus, Type 2/immunology , Diet , Disease Susceptibility , Humans , Immunity, Innate/immunology , Inflammation/immunology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/immunology , Nutritional Status , Obesity/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
5.
PLoS One ; 17(2): e0264124, 2022.
Article in English | MEDLINE | ID: covidwho-1703795

ABSTRACT

BACKGROUND: The vast majority of COVID-19 cases both symptomatic and asymptomatic develop immunity after COVID-19 contagion. Whether lasting differences exist between infection and vaccination boosted immunity is yet to be known. The aim of this study was to determine how long total anti-SARS-CoV2 antibodies due to past infection persist in peripheral blood and whether sex, age or haematological features can influence their lasting. MATERIAL AND METHODS: A series of 2421 donations either of SARS-CoV-2 convalescent plasma or whole blood from 1107 repeat donors from January 2020 to March 2021 was analysed. An automated chemiluminescence immunoassay for total antibodies recognizing the nucleocapsid protein of SARS-CoV-2 in human serum and plasma was performed. Sex, age, blood group, blood cell counts and percentages and immunoglobulin concentrations were extracted from electronic recordings. Blood donation is allowed after a minimum of one-month post symptom's relapse. Donors were 69.7% males and their average age was 46. The 250 donors who had later donations after a positive one underwent further analysis. Both qualitative (positivity) and quantitative (rise or decline of optical density regarding consecutive donations) outcomes were evaluated. RESULTS AND DISCUSSION: In 97.6% of donors with follow-up, anti-SARS-CoV-2 protein N total antibodies remained positive at the end of a follow-up period of 12.4 weeks median time (1-46, SD = 9.65) after the first positive determination. The blood group was not related to antibody waning. Lower lymphocyte counts and higher neutrophils would help predict future waning or decay of antibodies. Most recovered donors maintain their total anti-SARS-CoV-2 N protein antibodies for at least 16 weeks (at least one month must have been awaited from infection resolution to blood donation). The 10 individuals that could be followed up longer than 40 weeks (approximately 44 weeks after symptom's relapse) were all still positive.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adaptive Immunity/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/blood , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Male , Middle Aged , Plasma , SARS-CoV-2/pathogenicity , COVID-19 Serotherapy
7.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1692473

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
8.
Front Immunol ; 12: 769442, 2021.
Article in English | MEDLINE | ID: covidwho-1686473

ABSTRACT

The prevention of the COVID-19 pandemic is highly complicated by the prevalence of asymptomatic and recurrent infection. Many previous immunological studies have focused on symptomatic and convalescent patients, while the immune responses in asymptomatic patients and re-detectable positive cases remain unclear. Here we comprehensively analyzed the peripheral T-cell receptor (TCR) repertoire of 54 COVID-19 patients in different courses, including asymptomatic, symptomatic, convalescent, and re-detectable positive cases. We identified a set of V-J gene combinations characterizing the upward immune responses through asymptomatic and symptomatic courses. Furthermore, some of these V-J combinations could be awakened in the re-detectable positive cases, which may help predict the risk of recurrent infection. Therefore, TCR repertoire examination has the potential to strengthen the clinical surveillance and the immunotherapy development for COVID-19.


Subject(s)
COVID-19/pathology , Immunoglobulin J-Chains/genetics , Immunoglobulin Variable Region/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Adult , Aged , Asymptomatic Infections , COVID-19/immunology , Female , Gene Expression/genetics , Histocompatibility Antigens Class I/genetics , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Young Adult
9.
Cells ; 11(4)2022 02 13.
Article in English | MEDLINE | ID: covidwho-1686622

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the pathogenic agent of Coronavirus-Induced Disease-2019 (COVID-19), a multi-organ syndrome which primarily targets the respiratory system. In this review, considering the large amount of data pointing out the role of the Aryl hydrocarbon Receptor (AhR) in the inflammatory response and in the modulation of innate and adaptive immunity, we describe some mechanisms that strongly suggest its involvement in the management of COVID-19's inflammatory framework. It regulates both the expression of Angiotensin Converting Enzyme-2 (ACE-2) and its stabilizing partner, the Broad neutral Amino acid Transporter 1 (B0AT1). It induces Indolamine 2,3 dioxygenase (IDO-1), the enzyme which, starting from Tryptophan (Trp), produces Kynurenine (Kyn, Beta-Anthraniloyl-L-Alanine). The accumulation of Kyn and the depletion of Trp arrest T cell growth and induce apoptosis, setting up an immune-tolerant condition, whereas AhR and interferon type I (IFN-I) build a mutual inhibitory loop that also involves NF-kB and limits the innate response. AhR/Kyn binding boosts the production of Interleukin-6 (IL-6), thus reinforcing the inflammatory state and counteracting the IDO-dependent immune tolerance in the later stage of COVID-19. Taken together, these data depict a framework where sufficient clues suggest the possible participation of AhR in the management of COVID-19 inflammation, thus indicating an additional therapeutic target for this disease.


Subject(s)
COVID-19/metabolism , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2/metabolism , Adaptive Immunity/immunology , Amino Acid Transport Systems, Neutral/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , COVID-19/immunology , COVID-19/transmission , Humans , Immunity, Innate/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Kynurenine/metabolism , Receptors, Aryl Hydrocarbon/physiology , SARS-CoV-2/pathogenicity , Signal Transduction , Tryptophan/metabolism
11.
Cells ; 11(3)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1674518

ABSTRACT

This review is a comprehensive analysis of the effects of SARS-CoV-2 infection on Unconventional T cells and innate lymphoid cells (ILCs). COVID-19 affected patients show dysregulation of their adaptive immune systems, but many questions remain unsolved on the behavior of Unconventional cells and ILCs during infection, considering their role in maintaining homeostasis in tissue. Therefore, we highlight the differences that exist among the studies in cohorts of patients who in general were categorized considering symptoms and hospitalization. Moreover, we make a critical analysis of the presence of particular clusters of cells that express activation and exhausted markers for each group in order to bring out potential diagnostic factors unconsidered before now. We also focus our attention on studies that take into consideration recovered patients. Indeed, it could be useful to determine Unconventional T cells' and ILCs' frequencies and functions in longitudinal studies because it could represent a way to monitor the immune status of SARS-CoV-2-infected subjects. Possible changes in cell frequencies or activation profiles could be potentially useful as prognostic biomarkers and for future therapy. Currently, there are no efficacious therapies for SARS-CoV-2 infection, but deep studies on involvement of Unconventional T cells and ILCs in the pathogenesis of COVID-19 could be promising for targeted therapies.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/virology , Homeostasis/immunology , Humans , Lymphocyte Activation/immunology , Lymphocyte Count , Pandemics/prevention & control , SARS-CoV-2/physiology
12.
Front Immunol ; 12: 816745, 2021.
Article in English | MEDLINE | ID: covidwho-1662588

ABSTRACT

COVID-19 patients show heterogeneous and dynamic immune features which determine the clinical outcome. Here, we built a single-cell RNA sequencing (scRNA-seq) dataset for dissecting these complicated immune responses through a longitudinal survey of COVID-19 patients with various categories of outcomes. The data reveals a highly fluctuating peripheral immune landscape in severe COVID-19, whereas the one in asymptomatic/mild COVID-19 is relatively steady. Then, the perturbed immune landscape in peripheral blood returned to normal state in those recovered from severe COVID-19. Importantly, the imbalance of the excessively strong innate immune response and delayed adaptive immunity in the early stage of viral infection accelerates the progression of the disease, indicated by a transient strong IFN response and weak T/B-cell specific response. The proportion of abnormal monocytes appeared early and rose further throughout the severe disease. Our data indicate that a dynamic immune landscape is associated with the progression and recovery of severe COVID-19, and have provided multiple immune biomarkers for early warning of severe COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Interferons/immunology , B-Lymphocytes/immunology , Humans , Immunity, Innate/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology
13.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
14.
Elife ; 112022 01 13.
Article in English | MEDLINE | ID: covidwho-1622818

ABSTRACT

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Interferon-gamma/pharmacology , SARS-CoV-2/pathogenicity , Adaptive Immunity/immunology , Animals , Disease Models, Animal , Interferon-gamma/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/genetics , Spike Glycoprotein, Coronavirus/genetics
15.
Front Immunol ; 12: 797919, 2021.
Article in English | MEDLINE | ID: covidwho-1608316

ABSTRACT

Persistence of protective immunity for SARS-CoV-2 is important against reinfection. Knowledge on SARS-CoV-2 immunity in pediatric patients is currently lacking. We opted to assess the SARS-CoV-2 adaptive immunity in recovered children and adolescents, addressing the pediatrics specific immunity towards COVID-19. Two independent assays were performed to investigate humoral and cellular immunological memory in pediatric convalescent COVID-19 patients. Specifically, RBD IgG, CD4+, and CD8+ T cell responses were identified and quantified in recovered children and adolescents. SARS-CoV-2-specific RBD IgG detected in recovered patients had a half-life of 121.6 days and estimated duration of 7.9 months compared with baseline levels in controls. The specific T cell response was shown to be independent of days after diagnosis. Both CD4+ and CD8+ T cells showed robust responses not only to spike (S) peptides (a main target of vaccine platforms) but were also similarly activated when stimulated by membrane (M) and nuclear (N) peptides. Importantly, we found the differences in the adaptive responses were correlated with the age of the recovered patients. The CD4+ T cell response to SARS-CoV-2 S peptide in children aged <12 years correlated with higher SARS-CoV-2 RBD IgG levels, suggesting the importance of a T cell-dependent humoral response in younger children under 12 years. Both cellular and humoral immunity against SARS-CoV-2 infections can be induced in pediatric patients. Our important findings provide fundamental knowledge on the immune memory responses to SARS-CoV-2 in recovered pediatric patients.


Subject(s)
Adaptive Immunity/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , Adolescent , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Male , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
16.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1598468

ABSTRACT

mRNA vaccines for SARS-CoV-2 have shown exceptional clinical efficacy, providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used scRNA-Seq and functional assays to compare humoral and cellular responses to 2 doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4+ T cells, and robust antigen-specific polyfunctional CD4+ T cell responses following vaccination. On the other hand, although clonally expanded CD8+ T cells were observed following both vaccination and natural infection, CD8+ T cell responses were relatively weak and variable. In addition, TCR gene usage was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of CD8+ T cell clones that occupy distinct clusters compared to those induced by vaccination and likely recognize a broader set of viral antigens of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response in which early CD4+ T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8+ T cells, together capable of contributing to future recall responses.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Adult , Aged , Antigens, Viral , B-Lymphocytes , BNT162 Vaccine/therapeutic use , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Carrier State , Convalescence , Epitopes , Female , Humans , Immunity, Cellular/genetics , Immunity, Humoral/genetics , Immunogenicity, Vaccine , Immunologic Memory , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells , Th17 Cells , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Young Adult , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
17.
AIDS Rev ; 23(3): 153-163, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1579385

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious RNA coronavirus responsible for the pandemic of the coronavirus disease 2019 (COVID-19). Recent advances in virology, epidemiology, diagnosis, and clinical management of COVID-19 have contributed to the control and prevention of this disease, but re-positivity of SARS-CoV-2 in recovered COVID-19 patients has brought a new challenge for this worldwide anti-viral battle. Reverse transcription polymerase chain reaction (RT-PCR) tests of the SARS-CoV-2 pathogen is widely used in clinical diagnosis, but a positive RT-PCR result may be multifactorial, including false positive, SARS-CoV-2 RNA fragment shedding, reinfection of SARS-CoV-2, or re-activation of COVID-19. Re-infection of SARS-CoV-2 or re-activation of COVID-19 is an indicator of live viral carriers and isolation/treatment is needed, but SARS-CoV-2 RNA fragment shedding is not. SARS-CoV-2 RNA is recently reported to integrate into the host genome, but the far-reaching outcome is currently unclear. Therefore, it is critical for appropriate manipulation and prevention of COVID-19 to distinguish these causal factors of SARS-CoV-2 re-positivity. In this review article, we updated the current knowledge of SARS-CoV-2 re-positivity in discharged COVID-19 patients with a focus on re-infection and re-activation. We proposed a hypothetical flowchart for handling of the SARS-CoV-2 re-positive cases.


Subject(s)
COVID-19/pathology , RNA, Viral/analysis , Reinfection/virology , SARS-CoV-2/genetics , Virus Activation/genetics , Adaptive Immunity/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/diagnosis , Child , Child, Preschool , False Positive Reactions , Female , Humans , Infant , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
18.
Commun Biol ; 4(1): 1389, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1585764

ABSTRACT

In light of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants potentially undermining humoral immunity, it is important to understand the fine specificity of the antiviral antibodies. We screened 20 COVID-19 patients for antibodies against 9 different SARS-CoV-2 proteins observing responses against the spike (S) proteins, the receptor-binding domain (RBD), and the nucleocapsid (N) protein which were of the IgG1 and IgG3 subtypes. Importantly, mutations which typically occur in the B.1.351 "South African" variant, significantly reduced the binding of anti-RBD antibodies. Nine of 20 patients were critically ill and were considered high-risk (HR). These patients showed significantly higher levels of transforming growth factor beta (TGF-ß) and myeloid-derived suppressor cells (MDSC), and lower levels of CD4+ T cells expressing LAG-3 compared to standard-risk (SR) patients. HR patients evidenced significantly higher anti-S1/RBD IgG antibody levels and an increased neutralizing activity. Importantly, a large proportion of S protein-specific antibodies were glycosylation-dependent and we identified a number of immunodominant linear epitopes within the S1 and N proteins. Findings derived from this study will not only help us to identify the most relevant component of the anti-SARS-CoV-2 humoral immune response but will also enable us to design more meaningful immunomonitoring methods for anti-COVID-19 vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Adaptive Immunity/immunology , Adult , Aged , COVID-19/virology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Male , Middle Aged , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL